Jordan tori for a torsion free abelian group
نویسندگان
چکیده
منابع مشابه
Divisibility Properties of Group Rings over Torsion-free Abelian Groups
Let G be a torsion-free abelian group of type (0, 0, 0, . . . ) and R an integrally closed integral domain with quotient field K. We show that every divisorial ideal (respectively, t-ideal) J of the group ring R[X;G] is of the form J = hIR[X;G] for some h ∈ K[X;G] and a divisorial ideal (respectively, t-ideal) I of R. Consequently, there are natural monoid isomorphisms Cl(R) ∼= Cl(R[X;G]) and C...
متن کاملUniquely Transitive Torsion-free Abelian Groups
We will answer a question raised by Emmanuel Dror Farjoun concerning the existence of torsion-free abelian groups G such that for any ordered pair of pure elements there is a unique automorphism mapping the first element onto the second one. We will show the existence of such a group of cardinality λ for any successor cardinal λ = μ+ with μ = μ0.
متن کاملJump degrees of torsion-free abelian groups
We show, for each computable ordinal α and degree a > 0(α), the existence of a torsion-free abelian group with proper αth jump degree a.
متن کاملA theorem on torsion free Kleinian group
Let H be the hyperbolic 3-space and IsomH be the group of isometries of H. Let G be a discrete subgroup of IsomH. The action of G on H extends to a continuous action on the compactification of H by the sphere at infinity S ∞. The limit set Λ(G) is the set of all accumulation points of the orbit of a point in H. The limit set does not depend on the choice of the point in H and the limit set is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers of Mathematics in China
سال: 2014
ISSN: 1673-3452,1673-3576
DOI: 10.1007/s11464-014-0414-2